Variational description of statistical field theories using Daubechies’ wavelets
نویسندگان
چکیده
We investigate the description of statistical field theories using Daubechies’ orthonormal compact wavelets on a lattice. A simple variational approach is used to extend mean field theory and make predictions for the fluctuation strengths of wavelet coefficients and thus for the correlation function. The results are compared to Monte Carlo simulations. We find that wavelets provide a reasonable description of critical phenomena with only a small number of variational parameters. This lets us hope for an implementation of the renormalization group in wavelet space.
منابع مشابه
Application of Daubechies wavelets for solving Kuramoto-Sivashinsky type equations
We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition. Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method. The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method.
متن کاملMultisegmentation through wavelets: Comparing the efficacy of Daubechies vs Coiflets
-In this paper, we carry out a comparative study of the efficacy of wavelets belonging to Daubechies and Coiflet family in achieving image segmentation through a fast statistical algorithm.The fact that wavelets belonging to Daubechies family optimally capture the polynomial trends and those of Coiflet family satisfy mini-max condition, makes this comparison interesting. In the context of the p...
متن کاملComplex Daubechies Wavelets : Filters Design
The rst part of this work describes the full set of Daubechies Wavelets with a particular emphasis on symmetric (and complex) orthonormal bases. Some properties of the associated complex scaling functions are presented in a second part. The third and last part describes a multiscale image enhancement algorithm using the phase of the complex multiresolution representation of the 2 dimension sign...
متن کاملDenoising Real Images Using Complex-Valued Wavelets
Although the details are more complicated in two dimensions, the basic ideas behind (1) and (2) are the same: a function is described in terms of scaled and shifted copies of the “building blocks” and . More details can be found in (e.g.) Vidakovic (1999). The two families of compactly supported wavelets described by Daubechies (1992) are by far the most commonly used. These “extremal phase” an...
متن کاملImage enhancement with symmetric Daubechies wavelets
It is shown that analyses based on Symmetric Daubechies Wavelets (SDW) lead to a multiresolution form of the Laplacian operator. This property, which is related to the complex values of the SDWs, gives a way to new methods of image enhancement applications. After a brief recall of the construction and main properties of the SDW, we propose a representation of the sharpening operator at di erent...
متن کامل